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An oscillating cup viscometer was developed to measure the absolute viscosities
of molten metals. Previous experiments established the capability of the apparatus
to characterize the viscosities of molten nickel-based superalloys. However,
modifications to the instrument and its theoretical analysis were required for
reliable measurements on molten aluminum alloys, presumably due to their
lower densities and lower viscosities. The theoretical literature for the fluid flow
inside an oscillating cup is reviewed, and a working equation without any
correction factor is developed for the improved viscometer. Some design
parameters of the viscometer that directly affect the accuracy of viscosity esti-
mation by using the working equation are discussed. A special vertical furnace
was adopted to uniformly heat a longer cylindrical sample (10 mm inner diam-
eter and 120 mm length) with a temperature difference of less than 2°C over the
sample length. The measuring procedure was also improved to get more
accurate motion parameters. It is estimated that the working equation and
improved instrument provide an uncertainty of less than 4%. In addition,
applications and experimental data are presented for pure aluminum and three
aluminum alloys: A201, A319, and A356.
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1. INTRODUCTION

The oscillating cup viscometer has become a primary technique to measure
the absolute viscosities of high temperature liquids [1–3]. In the viscome-
ter, a high temperature liquid (such as a molten metal) is contained within



a crucible suspended by a wire to form a torsional pendulum, which
induces torsional oscillation motion. This motion is damped primarily by
viscous dissipation within the viscous liquid inside the crucible. The viscos-
ity of the liquid can be calculated by an analytical or numerical solution
of the equations of motion of the oscillating cup system. The principal
advantages of this technique are its mechanical simplicity and the ability to
measure the time period and amplitude decay with great precision.
Since the 1960s, a number of successful viscometers and their working

equations have been developed to measure the viscosities of liquids at high
temperature [4–6]. But, there are still large discrepancies between labora-
tories, sometimes amounting to 50%. It is commonly considered that the
errors come from the different kinds of viscometers and viscosity estima-
tion methods. Further study of the principle of viscometers and their
working equations is still very important to improve these measurement
techniques and obtain reliable viscosity data for science and industry.
Roscoe [7, 8] proposed an straightforward approximate method to cal-

culate the viscosity from the measured motion parameters. Advantages of the
method are that it is simple to use and easy to understand, so this method is
still often employed [2]. Kestin and Newell [9] and Beckwith and Newell
[10] provided another analytical method and working equation to calculate
viscosities of liquids from measurements of the oscillation parameters. This
method does not require a correction factor since an exact solution of the
equation of motion of oscillating cup systems is given. One of the primary
advantages of this method is its mathematical rigor with calculation errors
less than 0.01%. Thus, this method is preferred by many investigators. Ohta
et al. [11] used this method for their viscometer with oscillations of a spheri-
cal body. Torklep and Oye [12] also used it for their new-generation oscillat-
ing cup viscometer, and they presented a set of simplified calculation for-
mulae. Nunez et al. [3] also used the method for their new high-temperature
viscometer to measure the viscosity of molten salts. However, because of the
elimination of the correction factor, this method cannot correct for any other
errors which come from the viscometer itself or the measuring procedure,
such as the determination of a stiffness parameter, inertial damping and iner-
tial moment of the oscillation system, or data acquisition, curve fit of a har-
monica function, nonlinearity of oscillations of the system, or turbulent flow
in the liquid. These effects also can introduce error in the viscosity measure-
ment that cannot be corrected in the working equation. Thus, clear under-
standing of the theory of the oscillating cup is required to obtain reliable data.
In this paper, a new working equation without a correction factor is

developed for systems with small dimensionless radii. The details of the
equation are given by motion analysis of the system that defines the rela-
tionships among viscosity and the damping oscillation motion parameters.
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2. MOTION ANALYSIS

In an oscillating cup system, a cup with a viscous liquid is suspended
by an elastic wire. The cup is forced to rotate through an angle along the
wire axis and then held motionless (see Fig. 1). When the cup is released, it
will freely oscillate. If the oscillation is considered as a simple harmonic
motion, the two oscillation motion parameters, oscillation frequency w and
damping parameter D, can be measured by a curve fit technique. The vis-
cosity of an experimental liquid can be calculated from the two motion
parameters, other physical parameters of the system, and size of the
sample.
For an empty oscillating cup, a simple harmonic oscillation can be

described as

a(t)=a0(t) e−D0w0t sin(w0t+f) (1)

where a(t) is the angular displacement of the body from equilibrium, a0(t)
is the initial angular displacement, f is an oscillatory phase shift, w0 is an
angular frequency of the cup system without the liquid, and D0 is a loga-
rithmic decrement of the amplitude of the oscillation without the viscous
liquid, which is caused by the internal friction of the wire and the resistance
in the surrounding air.
Based on mechanical dynamics, the equation of the cup without liquid

can be written as

I0w
2
0
5d2a(y)
dy2

+2D0
da(y)
dy
+(1+D20) a(y)6=0 (2)
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Fig. 1. Torsional pendulum.
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with initial conditions,

for t=0, a(t)=a0 and
da(t)
dt
=0.

The angular frequency and damping parameter are

w20=
k
I0
−1 c0
2I0
22 (3)

D0=
c0
2I0w0

(4)

where I0, c0, and k are, respectively, initial moment of the cup, damping
coefficient of the suspended wire, and stiffness coefficient of the suspended
wire. y is a dimensionless unit of time,

y=w0t (5)

If the oscillating cup contains a viscous liquid, the friction force that
comes from the liquid can be considered as an external applied force and
placed on the right side of Eq. (2). So, the motion equation of the cup
system with the viscous liquid becomes

Iw20 5
d2a(y)
dy2

+2D0
da(y)
dy
+(1+D20) a(y)6=M(y) (6)

where I is an initial moment of the cup system with the liquid and M(y) is
a torque around the z axis caused by the friction force of a liquid. By using
the Laplace transform, the above motion equation is rewritten as the func-
tion of a complex frequency s.

[(s+D0)2+1] ā(s)−
M̄(s)
Iw20
=(s+2D0) a0 (7)

where ā(s) and M̄(s) are, respectively, the transforms of a(y) andM(y).
If the liquid inside the oscillating cup is considered as an ideal viscous

fluid, the rate of flow is a function of the stress. The ratio of applied shear
stress to the rate of shear for an ideal viscous body is the viscosity, g. If the
viscous body is a Newtonian fluid, g is a constant. The torqueM(y) caused
by the total friction in the liquid is a function of the velocity of the liquid

M(y)=g FF
A

r2
“W

“n
ds (8)
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in which r is the radius of the cylindrical cup, W is an angular velocity
around the z axis, A denotes the surface of contact between the liquid and
the oscillating cup, and n is the normal direction of the fluid motion. If
the viscosity is expressed by a relative kinematic viscosity, m, Eq. (8) is
rewritten as

M(y)=mr FF
A

r2
“W

“n
ds (9)

where

m=g/r

and r is the density of a liquid.
The equation of motion of the liquid is described by the Navier–

Stokes equation:

r
“uF
“t
+uF ·NuF=rg−Np+m DuF (10)

The usual assumption of no secondary motion is invoked and the nonlinear
terms in Eq. (10) are eliminated. Based on this assumption, Eq. (10) for
cylindrical polar coordinates, a, r, and z (see Fig. 2) is rewritten as

“W

“t
=m 3“

2W

“r2
+
3
r
·
“W

“r
+
“
2W

“z2
4 (11)

Fig. 2. Fluid in the oscillating sample
cup.
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When R and H are, respectively, the radius and height of a cylindrical
sample, the boundary conditions to be satisfied by W are

– initial condition: t=0, W(r, z, t)=0. The fluid is initially at rest.

– boundary conditions: r=R, W(r, z, t)=da/dt. There is no slip at
the boundary between the fluid and the cup. a is an angle of the
pendulum system from its equilibrium position.

It is convenient to use dimensionless space coordinates by adopting an
average boundary layer thickness, d=`m/w0. Equation (11) is rewritten,
with t=r/d and g=z/d, as

sw=
“
2w
“t2
+
3
t
·
“w
“t
+
“
2w
“g2

(12)

where w is another dimensionless variable,

w=
W̄

w0(sā−a0)
. (13)

Equation (13) also results in a simplified boundary condition

w(t, g, s)=1 on A

Equation (12) can be solved by the well-known separation of variables
technique [9].

w(t, g, s)=
cosh`s(g0−g)

cosh`s g0
+ C

.

m=0

t0b1(smt)
tb1(smt0)

(t, s) sin
(2m+1) pg
2g0

(14)

with

s2m=s+1
(2m+1) p
2g0
22 (15)

and

t0=
R
d
, g0=

L
d
, (16)

and bi denotes a Bessel function of ith order.
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3. VISCOSITY ESTIMATION EQUATION

After the solution of the equation of motion for liquid flow in an
oscillating cup is obtained, the friction force can be calculated using Eq. (9).
Substituting this force into the system motion equation provides the system
equation as

ā(s)
a0
=
1
s
−

1+D20
s[(s+D0)2+1+D(s)]

, (17)

with

D(s)=+
rd4

I
s FF
A

t2
“w

“n
ds (18)

Using the solution of the motion Eq. (14), we obtain the analytic equation
for D(s)

D(s)=s2
IŒ
I
3 tanh(`s g0)

`s g0
+
32s
p2t0

C
.

m=0

1
(2m+1)2 s3m

b2(smt0)
b1(smt0)
4 (19)

where

IŒ=prHR4/2

By inversion of the Laplace transform, the angular position now can be
written as the integral,

a(y)=
a0

2pi
F
C
e sy 31
s
−

1+D20
s[(s+D0)2+1+D(s)]

4 ds (20)

along any vertical contour C in the right-hand half of the complex plane.
Equation (20) can be evaluated by residue theory since the only sin-

gularities of the integrand are poles [9]. If we get the k roots, Sk of the
following equation:

(Sk+D0)2+1+D(Sk)=0 (21)

then Eq. (20) is solved as

a(y)=−a0 C
k

(1+D20) exp(Sky)
Sk[2Sk+2D0+D(Sk)]

(22)
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The ultimate purpose is to deduce the value of viscosity from the
observed behavior of the system oscillation. Assuming the oscillation of the
cup system with viscous liquid is a damped harmonic motion, the motion,
a(y), can be represented by simple harmonic motion plus a fast decay
transient f(t). Thus

a(y)=a0e−Dhy sin(hy+f)+f(y) (23)

where h=w/w0, and D is total damping observed with liquid in the cup.
After a few oscillation cycles, the experimental system will behave as a
simple harmonic oscillation according to

a(t) % e−Dhy cos(hy+f) (24)

where Sk, one of the roots of Eq. (21), is

Sk=h(−D±i) (25)

Substituting the above solution into Eq. (21), we obtain two equations by
taking the real and imaginary parts,

Re D[h(−D±i)]=−1+h2−(Dh−D0)2 (26)

Im D[h(−D±i)]=±2h(Dh−D0) (27)

and

D[(−D±i) h]=(−D±i)2 h2
IŒ
I
3 tanh(`(−D±i) h g0)

`(−D±i) h g0

+
32(−D±i) h
p2t0

C
.

m=0

1
(2m+1)2 s3m

b2(smt0)
b1(smt0)
4 (28)

Torklep [12] used the three lowest terms of the Bessel expansion and
two lowest terms of tanh function to give a simple and approximate vis-
cosity estimation formula,

D(s)=s2
IŒ
I
R 4s1/2t0− 6st20+ 3

2s3/2t30
+
3
2s2t40

+·· ·

+
1
s1/2g0

−
16
pst0g0

+
9

s3/2t20g0
−

8
ps2t30g0

+·· ·

S (29)
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Substituting Eq. (29) into Eqs. (26) and (27), Torklep then obtained a sim-
plified viscosity estimation formula,

IŒ
I
[−A(Dp+q) h1/2t−10 +BDht

−2
0 +Cph

3/2t−30 +Dh
2t−40 ]

=−1/h2+12−(D−D0/h)2 (30)

IŒ
I
[A(p−Dq) h1/2t−10 −Bht

−2
0 +Cqh

3/2t−30 ]=2w(Dw−D0) (31)

where

A=4+R/H

B=6+(16/p)(R/H)

C=(3/2)+9(R/H)

D=1.5−(8/p)(R/H)

p=1/{2[D+(1+D2)1/2]}1/2

q=1/2p

h=w/w0

t0=R(2pr/gDT)1/2

IŒ=prHR4/2

When the dimensionless radius, t0 is larger than 10, the approximate
error of Torklep’s simplified equation (Eqs. (30) and (31)) is less than 0.1%.
This requirement can be satisfied for many oscillating cup viscometers. But
for viscometers with t0 less than 10, Torklep’s equation will result in addi-
tional calculation error. In the case, it is recommended to use Eqs.
(26)–(28), which still have high calculation accuracy for any value of the
dimensionless radius.

4. APPLICATION

Figure 3 shows an oscillating cup viscometer from this study. In the
system, an inertia bar with a crucible is suspended with a single steel wire
of 56 cm length and 0.254 mm diameter. Solid samples were placed in the
bottom of flat-bottomed graphite crucibles. The graphite crucible was
coated by boron nitride to avoid chemical reaction between crucible and
samples. The sample sizes were 1 cm diameter and 12 cm length. The end
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Fig. 3. Schematic of the oscillating cup viscometer.

effect of the samples was neglected here due to the small diameter and long
length. Torsional impulses to the oscillator for initial excitation were gen-
erated through a rotary vacuum feed-through by a computer-driven step-
ping motor at the top of the system. A HeNe laser is reflected from a
mirror mounted on the inertia bar/crucible assembly, and the oscillations
of the reflected laser beam are detected by two photodiodes at fixed
angular positions. The working vacuum chamber is pumped with a diffu-
sion pump to 2×10−3 torr. A temperature-controlled furnace is used to
heat the alumina retort tube and melt the sample. Two Pt-10% Rh ther-
mocouples, axially spaced outside the crucible at the top and bottom of the
sample, are used to ensure axial temperature uniformity on the test sample.
The system is initially motionless at an off equilibrium position of 5

degrees. When a test begins, a stepping motor at the top of the pendulum
quickly returns the pendulum to equilibrium position, resulting in oscilla-
tion with an initial angle of 5 degrees and with an initial velocity of zero.
The oscillating motion data were collected by a PC computer. A curve fit is
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used to fit measured timing-position data to a simple harmonic oscillation
equation Eq. (25) and obtain the two main motion parameters, logarithmic
decrement and oscillation period.
Previous experiments established the capability of the apparatus to

characterize the viscosity of molten nickel-based superalloys [4]. The
instrument has been recently improved to measure low density and low
viscosity molten aluminum alloys. The following improvements have been
performed on the instrument.

– The viscosity estimation model presented above is used to calculate
the viscosity from the measured motion parameters.
– Length of a sample is increased from 5 to 12 cm. The larger dimen-
sion of the samples increases the damping ratein Eqs. (30) and (31)
and ensures accurate convergence of the working equation.
– A new furnace was used to uniformly heat the larger cylindrical
samples with an axial temperature difference controlled below 1°C.
This also minimizes buoyant forces which induce the second-order
terms in the Navier–Stokes equation and causes the simplified liquid
flow calculation model of Eq. (11) to be incorrect.
– The viscosities of aluminum alloys are quite low, so the decay of
oscillation is much slower. In order to characterize the viscosity of
these materials, more oscillation cycles are used to get the decrement
of the oscillation. The measurement time increased from 100 to
400 s, which ensures the accuracy of the curve fit.

After improving the viscometer and adopting the working equation
without a correction factor, the accuracy and repeatability are much
improved for low viscosity, low-density aluminum alloy samples. The vis-
cosities of pure aluminum and three aluminum alloys were measured in the
present study. The samples were machined to 1 cm diameter and 12 cm
length. The chemical compositions are shown in Table I. Three measure-
ments were made at each temperature, and the average data are listed in
Table II and Fig. 4. The logarithms of viscosities vs. 1/T for the mea-
surement data are shown in Fig. 5. Empirical Arrhenius-type equations for
the materials were determined to be:

Pure Aluminum, m=0.205 exp(1780K−1) (32)

A201 m=0.214 exp(1690K−1) (33)

A319 m=0.219 exp(1480K−1) (34)

A356 m=0.157 exp(1850K−1) (35)
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Table I. Chemical Compositions of Samples (wt%)

Sample Ag. Cu Si Fe Mg Mn. Ti AL

Pure AL – – – – – – – 99.995
A201 0.59 4.7 < 0.05 0.05 0.28 0.31 0.21 Remainder
A319 – 3.01 6.1 0.68 0.3 0.71 – Remainder
A356 – – 6.9 0.08 0.34 – 0.013 Remainder

The liquidus temperatures of these alloys were determined by DSC,
which ensured the measured viscosities are in the all liquid zones of the
alloys. The liquid flows of alloys in mushy zones will become non-Newto-
nian. In that case, Eq. (9) is not satisfied and the viscosities of two-phase
fluids cannot be obtained by the above method. Another technique is being
investigated to measure viscosities of metals in the mushy zone. Densities
of the molten alloys were characterized in a separate investigation.

Table II. Viscosity Measurements of Aluminum Samples (mPa · s)

Temperature (°C) Pure Al A201 A319 A356

678 1.345
688 0.999
690 1.045
706 1.284 1.214
727 1.127
733 0.987
735 1.183
742 0.947
755 1.106
760 1.149
765 0.929
766 1.086
783 1.095
787 1.051
788 0.924
789 0.903
808 1.021
815 1.049 0.857
840 0.831 0.821
841 1.037
866 0.811
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Fig. 4. Viscosities of the aluminum samples [n, pure aluminum, Eq. (32); j,
A201, Eq. (33);g A319, Eq. (34);i A356, Eq. (35)].
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Fig. 5. Viscosities of the aluminum samples vs. reciprocal of absolute tem-
perature [n, pure aluminum, Eq. (32);j A201, Eq. (33);g A319, Eq. (34);i
A356, Eq. (35)].
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5. CONCLUSION

A working equation to calculate the viscosity of fluids from measured
oscillating motion parameters without any correction factor was developed
for an improved oscillating cup viscometer. The technique was utilized to
measure viscosities of molten aluminum alloy samples with low densities
and low viscosities. The experimental data are very repeatable. The study
of the working equation shows it has very high mathematical accuracy, but
special attention should be taken when obtaining oscillation parameters
and other system design parameters.
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